Decomposition of an Order Isomorphism between Matrix-ordered Hilbert Spaces
نویسندگان
چکیده
The purpose of this note is to show that any order isomorphism between noncommutative L2-spaces associated with von Neumann algebras is decomposed into a sum of a completely positive map and a completely copositive map. The result is an L2 version of a theorem of Kadison for a Jordan isomorphism on operator algebras.
منابع مشابه
On the Decomposition of Hilbert Spaces
Basic relation between numerical range and Davis-Wielandt shell of an operator $A$ acting on a Hilbert space with orthonormal basis $xi={e_{i}|i in I}$ and its conjugate $bar{A}$ which is introduced in this paper are obtained. The results are used to study the relation between point spectrum, approximate spectrum and residual spectrum of $A$ and $bar{A}$. A necessary and sufficient condition fo...
متن کاملSome Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملConnectivity of a Leximorphic Space
A linearly ordered closed interval M is leximorphic when there exists an isomorphism from M to M ×M . This paper settles one of the major open questions concerning these spaces by proving that all leximorphic spaces are not connected.
متن کاملPositive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras
In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کامل